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I The strategy of regions

Starting point: (multi-)loop integral

F =

∫

ddk1

∫

ddk2 · · ·
1

(k1 + p1)2 −m2
1

×

×
1

(k1 + k2 + p2)2 −m2
2

· · ·

• complicated function of internal masses mi and kinematical parameters p2i , pi · pj
• exact evaluation often hard or impossible

Exploit parameter hierarchies, e.g. large energies Q ≫ small masses m:

→֒ expand integral in small ratios m2

Q2

→֒ simplification achieved if expansion of integrand before integration

But:

⋆ loop-momentum components kµi can take any values (large, small, mixed, . . .)

⋆ naive expansions of integrand may generate new singularities

→֒ Need sophisticated methods of asymptotic expansions.
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Simple example: large-momentum expansion

p

m m

k k

k + p

F =

∫
Dk

(k + p)2 (k2 −m2)2







∫

Dk ≡ µ2ǫeǫγE

∫

ddk

iπd/2

d = 4− 2ǫ







Large momentum |p2| ≫ m2  expand in m2

p2 .

Integral is UV- and IR-finite, the exact result is known: [p2 → p2 + i0]

F =
1

p2

[

ln

(
−p2

m2

)

+ ln

(

1−
m2

p2

)]

+O(ǫ)

−−−−→
expand

1

p2



ln

(
−p2

m2

)

−
∞∑

j=1

1

j

(
m2

p2

)j


+O(ǫ)

Now assume that we could not calculate this integral exactly . . .
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Large-momentum expansion (2)
F =

∫
Dk

(k + p)2 (k2 −m2)2 p

m m

k k

k + p

Large momentum |p2| ≫ m2

→֒ expand integrand before integration:

Expansion by regions Beneke, Smirnov, Nucl. Phys. B 522, 321 (1998)
Smirnov, Rakhmetov, Theor. Math. Phys. 120, 870 (1999)

Smirnov, Phys. Lett. B 465, 226 (1999)→֒ here 2 relevant regions:

• hard (h): k ∼ p ⇒
∑

i

T
(h)
i

1

(k2 −m2)2
=

∞∑

i=0

(1 + i)
(m2)i

(k2)2+i

• soft (s): k ∼ m ⇒
∑

j

T
(s)
j

1

(k + p)2
=

∞∑

j1,j2=0

(j1 + j2)!

j1! j2!

(−2k · p)j1 (−k2)j2

(p2)1+j1+j2

⇒ Integrate each expanded term over the whole integration domain.

⇒ Set scaleless integrals to zero (like in dimensional regularization).

Leading-order contributions:

• hard: F
(h)
0 =

∫
Dk

(k + p)2 (k2)2
=

1

p2

(
µ2

−p2

)ǫ (

−1

ǫ
+O(ǫ)

)

• soft: F
(s)
0 =

∫
Dk

p2 (k2 −m2)2
=

1

p2

(
µ2

m2

)ǫ (
1

ǫ
+O(ǫ)

)

→֒ Contributions are homogeneous functions of the expansion parameter m2

p2 .
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Large-momentum expansion (3)

p

m m

k k

k + p

Leading-order contributions:

• hard: F
(h)
0 =

1

p2

[

−1

ǫ
+ ln

(
−p2

µ2

)]

+O(ǫ)  IR-singular!

• soft: F
(s)
0 =

1

p2

[
1

ǫ
+ ln

(
µ2

m2

)]

+O(ǫ)  UV-singular!

→֒ Singularities are cancelled in the sum of all contributions, exact result approximated:

F0 = F
(h)
0 + F

(s)
0 =

1

p2
ln

(
−p2

m2

)

+O(ǫ) = F +O

(
m2

(p2)2

)

X

Expand to all orders in m2

p2 : [(α)n = Γ(α + n)/Γ(α)]

F (h) =
1

p2

(

µ2

−p2

)ǫ
eǫγE Γ(1 + ǫ) Γ2(1− ǫ)

(−ǫ) Γ(1− 2ǫ)

∞
∑

i=0

(

m2

p2

)i
(2ǫ)i

i!
= F

(h)
0 +

2

p2
ln

(

1−
m2

p2

)

+O(ǫ)

F (s) =
1

p2

(

µ2

m2

)ǫ

eǫγE Γ(ǫ)
∞
∑

j=0

(

m2

p2

)j
(ǫ)j

(1− ǫ)j
= F

(s)
0 −

1

p2
ln

(

1−
m2

p2

)

+O(ǫ)

→֒ F = F (h) + F (s) =
1

p2

[

ln

(

−p2

m2

)

+ ln

(

1−
m2

p2

)]

+O(ǫ) X

⇒ Full result F exactly reproduced.
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Questions: Why does this expansion by regions work?

• Didn’t we double-count every k ∈ R
d when replacing

∫
Dk →

∫
Dk T

(h)
0 +

∫
Dk T

(s)
0 ?

• What ensures the cancellation of singularities? (IR ↔ UV!)

• How do we know that the chosen set of regions is complete?

• What is the role of scaleless integrals?
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II Why does the method work?

Idea based on a 1-dimensional toy example from M. Beneke (1997)
[see also: Smirnov, Applied Asymptotic Expansions In Momenta And Masses]

Large-momentum example
p

m m

k k

k + p

Let us show step by step how the expansions reproduce the full result.

The expansions
∑

i T
(h)
i ,

∑

j T
(s)
j converge absolutely within domains Dh, Ds:

(h):
1

(k2 −m2)2
=

∑

i

T
(h)
i

1

(k2 −m2)2
within Dh =

{

k ∈ R
d : |k2| ≥ Λ2

}

,

(s):
1

(k + p)2
=

∑

j

T
(s)
j

1

(k + p)2
within Ds =

{

k ∈ R
d : |k2| < Λ2

}

,

with m2 ≪ Λ2 ≪ |p2|  Dh ∪Ds = R
d, Dh ∩Ds = ∅.

The expansions commute with integrals restricted to the corresponding domains:

F =

∫

k∈Rd

Dk
1

(k + p)2 (k2 −m2)2
︸ ︷︷ ︸

I

=
∑

i

∫

k∈Dh

Dk T
(h)
i I +

∑

j

∫

k∈Ds

Dk T
(s)
j I
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Continue transforming the expression for the full integral:

p

m m

k k

k + p

F =

∫

k∈Rd

Dk
1

(k + p)2 (k2 −m2)2
︸ ︷︷ ︸

I

=
∑

i

∫

k∈Dh

Dk T
(h)
i I +

∑

j

∫

k∈Ds

Dk T
(s)
j I

=
∑

i

( ∫

k∈Rd

Dk T
(h)
i I −

∑

j

∫

k∈Ds

Dk T
(s)
j T

(h)
i I

)

+
∑

j

( ∫

k∈Rd

Dk T
(s)
j I −

∑

i

∫

k∈Dh

Dk T
(h)
i T

(s)
j I

)

The expansions commute: T
(h)
i T

(s)
j I = T

(s)
j T

(h)
i I ≡ T

(h,s)
i,j I

⇒ Identity: F =
∑

i

∫

Dk T
(h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T
(s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T
(h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

All terms integrated over the whole integration domain R
d as prescribed for the

expansion by regions ⇒ location of boundary Λ between Dh, Ds irrelevant.



Bernd Jantzen, Foundation and generalization of the expansion by regions 9/19

Identity: F =
∑

i

∫

Dk T
(h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T
(s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T
(h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

p

m m

k k

k + p

Additional overlap contribution F (h,s)?

F
(h,s) =

∞∑

i=0

(1 + i)

∞∑

j1,j2=0

(−1)j2
(j1 + j2)!

j1! j2!

(m2)i

(p2)1+j1+j2

∫

Dk
(−2k · p)j1
(k2)2+i−j2

= 0 scaleless!

[Actually
∫

Dk
(k2)2

= 1
ǫUV

− 1
ǫIR

cancels corresponding singularities in F (h) and F (s).]

→֒ F = F (h)
+ F (s) as found before.

But now this identity has been obtained without evaluating F , F (h), F (s) !
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III Examples

Example with 3 regions: threshold expansion for heavy-particle pair production

Regions analyzed in Beneke, Smirnov, NPB 522, 321 (1998)

q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

Centre-of-mass system: (qµ) = (q0,~0), (p
µ) = (0, ~p )

Close to threshold: q2 ≈ (2m)2 ⇒ q2 ≫ |p2| or q0 ≫ |~p|

F =

∫
Dk

(k2 + q0k0 − 2~p · ~k) (k2 − q0k0 − 2~p · ~k) k2

Relevant regions:

• hard (h): k0, |~k| ∼ q0 ⇒ expansion
∑

j T
(h)
j converges in Dh

• soft (s): k0, |~k| ∼ |~p| ⇒ expansion
∑

j T
(s)
j converges in Ds

• potential (p): k0 ∼ ~p 2

q0
, |~k| ∼ |~p| ⇒ expansion

∑

j T
(p)
j converges in Dp

→֒ Dh ∪Ds ∪Dp = R
d, Dh ∩Ds = Dh ∩Dp = Ds ∩Dp = ∅

→֒ The expansions T (h), T (s), T (p) commute with each other.
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Threshold expansion (2)

q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

Similar transformations as for the large-momentum example
yield the following identity:

F = F (h) + F (s)
︸︷︷︸

=0

+ F (p) −
(

F (h,s)
︸ ︷︷ ︸

=0

+ F (h,p)
︸ ︷︷ ︸

=0

+ F (s,p)
︸ ︷︷ ︸

=0

)

+ F (h,s,p)
︸ ︷︷ ︸

=0 (scaleless)

with

F
(h) = − 2

q2

(
4µ2

q2

)ǫ

e
ǫγE Γ(ǫ)

∞∑

j=0

(

−4p2

q2

)j
(1 + ǫ)j

j! (1 + 2ǫ+ 2j)

F
(p) =

eǫγE Γ( 1
2
+ ǫ)

√
π

2ǫ
√

q2 (p2 − i0)

(
µ2

p2 − i0

)ǫ
[
higher orders are scaleless

]

Exact result reproduced:

F
(h) + F

(p) = F =
eǫγE Γ(ǫ)

2p2

(
µ2

p2 − i0

)ǫ

2F1

(
1

2
, 1 + ǫ;

3

2
;− q2

4p2
− i0

)

X
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m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

Example with non-commuting expansions: Sudakov form factor

Cannot always choose expansions which commute with each other.

Sudakov limit: −(p1 − p2)
2 = Q2 ≫ m2

F =

∫
Dk

(k+k− − ~k2
⊥ +Qk+)1+δ (k+k− − ~k2

⊥ +Qk−)1−δ (k+k− − ~k2
⊥ −m2)

→֒ analytic regulator δ → 0 [light-cone coordinates: 2p1,2 · k = Qk±, p1,2 · k⊥ = 0]

Regions & domains:

• hard (h): k+, k−, |~k⊥| ∼ Q ⇒ Dh =
{

k ∈ R
d : ~k2

⊥ ≫ m
2
}

|k+|

|k−|

(cp)(1c)

(1c)
or (2c)

(2c)(g)

Q

m

~k 2
⊥/Q

~k 2
⊥/Q

m Q

~k 2
⊥ . m2

• 1-collinear (1c): k+ ∼ m2

Q
, k− ∼ Q, |~k⊥| ∼ m

• 2-collinear (2c): k+ ∼ Q, k− ∼ m2

Q
, |~k⊥| ∼ m

• Glauber (g): k+, k− ∼ m2

Q
, |~k⊥| ∼ m

• collinear-plane (cp): k+, k− ∼ Q, |~k⊥| ∼ m

→֒ “artificial” region to ensure ∪xDx = R
d

[No soft region needed: T (s) ≡ T (1c)T (2c)]

Most expansions commute, but T (g)T (cp) 6= T (cp)T (g) !
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Sudakov form factor (2)

T (g)T (cp) 6= T (cp)T (g)  Construct identity avoiding combination of (g) and (cp):

F = F
(h) + F

(1c) + F
(2c) + F

(g) + F
(cp)

−
(

F
(h,1c) + F

(h,2c) + F
(h,g) + F

(h,cp) + F
(1c,2c) + F

(1c,g) + F
(1c,cp) + F

(2c,g) + F
(2c,cp)

)

+ F
(h,1c,2c) + F

(h,1c,g) + F
(h,1c,cp) + F

(h,2c,g) + F
(h,2c,cp) + F

(1c,2c,g) + F
(1c,2c,cp)

−
(

F
(h,1c,2c,g) + F

(h,1c,2c,cp)
)

+ F
extra
cp←g + F

extra
g←cp

Usual terms:

• no combination of (g) and (cp)

• F (g), F (cp) and all overlap contributions are scaleless (with analytic regularization)

Extra terms:

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

• F extra
cp←g involves T (cp)T (g) integrated over k ∈ Dcp

• F extra
g←cp involves T (g)T (cp) integrated over k ∈ Dg

Both extra terms cancel at the integrand level,

e.g. in F extra
g←cp because T (x)T (g)T (cp) = T (g)T (cp) ∀x ∈ {h, 1c, 2c}.

[They must cancel  otherwise dependence on boundaries of Dg, Dcp.]
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Sudakov form factor (3)

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

Omitting scaleless contributions and vanishing extra terms:

F = F (h) + F (1c) + F (2c)

Regions explicitly evaluated to all orders in m2

Q2
: [omitting O(δ) and O(ǫ)]

F
(h) = − 1

Q2

(
µ2

Q2

)ǫ {
1

ǫ2
− 2

ǫ
ln

(

1− m2

Q2

)

+ ln2

(

1− m2

Q2

)

− 2Li2

(
m2

Q2

)

− π2

12

}

F
(1c)

, F
(2c) = − 1

2Q2

(
µ2

Q2

)ǫ {

±1

δ

[
1

ǫ
+ ln

Q2

m2
− ln

(

1− m2

Q2

)]

− 1

ǫ2
+

2

ǫ
ln

(

1− m2

Q2

)

+
1

2
ln2 Q2

m2
+ ln

Q2

m2
ln

(

1− m2

Q2

)

− ln2

(

1− m2

Q2

)

+ Li2

(
m2

Q2

)

+
5

12
π
2

}

→֒ F (1c) and F (2c) are not separately finite for δ → 0, but their sum is.

Compare to exact result:

F = − 1

Q2

{
1

2
ln2 Q2

m2
+ ln

Q2

m2
ln

(

1− m2

Q2

)

− Li2

(
m2

Q2

)

+
π2

3

}

X
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IV The general formalism

Identities as in the previous examples are generally valid, under some conditions.

Consider

• a (multiple) integral F =
∫
Dk I over the domain D (e.g. D = R

d),

• a set of N regions R = {x1, . . . , xN},

• for each region x ∈ R an expansion T (x) =
∑

j T
(x)
j

which converges absolutely in the domain Dx ⊂ D.

Conditions

•
⋃

x∈R Dx = D, Dx ∩Dx′ = ∅ ∀x 6= x′ .

• Some of the expansions commute with each other.

Let Rc = {x1, . . . , xNc} and Rnc = {xNc+1, . . . , xN} with 1 ≤ Nc ≤ N .

Then: T (x)T (x′) = T (x′)T (x) ≡ T (x,x′) ∀x ∈ Rc , x
′ ∈ R .

• Every pair of non-commuting expansions is invariant under some expansion from Rc:

∀x′1, x
′
2 ∈ Rnc ∃x ∈ Rc : T

(x)T (x′

2
)T (x′

1
) = T (x′

2
)T (x′

1
) .

• ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
→֒ All expanded integrals and series expansions in the formalism are well-defined.
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The general formalism (2)

Under these conditions, the following identity holds:
[

F (x,...) ≡
∑

j,...

∫

Dk T
(x,...)
j,... I

]

F =
∑

x ∈ R

F
(x) −

〈Rc + 1〉
∑

{x′

1
, x′

2
} ⊂ R

F
(x′

1
,x′

2
) + . . .− (−1)n

〈Rc + 1〉
∑

{x′

1
, . . . , x′

n
} ⊂ R

F
(x′

1
,...,x′

n
) + . . .+ (−1)Nc

∑

x′ ∈ Rnc

F
(x′,x1,...,xNc )

where the sums run over subsets {x′1, . . .} containing at most one region from Rnc.

Comments

• This identity is exact when the expansions are summed to all orders. X

Leading-order approximation for F  dropping higher-order terms.

• It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal

masses/off-shellness, . . .) as long as all individual terms are well-defined.

• Usually regions & regularization are chosen such that multiple expansions

F (x′

1
,...,x′

n
) (n ≥ 2) are scaleless and vanish.

[X if each F
(x)
0 is a homogeneous function of the expansion parameter with unique scaling.]

• If ∃ F (x′

1
,x′

2
,...) 6= 0  relevant overlap contributions (→ “zero-bin subtractions”).

They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart ’06;
Chiu, Fuhrer, Hoang, Kelley, Manohar ’09; . . .
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Example with relevant overlap contributions:
forward scattering with small momentum exchange

|k+|

|k−|

(h)

(1c)

(2c)(g)

~k 2
⊥

|~r⊥|

~k 2

⊥

Q

~r 2
⊥

Q

~r 2
⊥/Q ~k 2

⊥/Q
~k 2
⊥/|~r⊥|

|~k⊥| ≫ |~r⊥|

|k+|

|k−|

(cp)

(1c)

(g)

Q

|~r⊥|

|~r⊥||~k⊥|

Q

|~r⊥||~k⊥|/Q |~r⊥| Q

|~k⊥| . |~r⊥|

(2c)

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k

Two light-like particles with large center-of-mass energy
exchange a small momentum r:

p21 = (p1 − r)2 = p22 = (p2 + r)2 = 0

(p1 + p2)
2 = Q2 ≫ ~r 2

⊥ , r± ≈ ∓
~r 2

⊥

Q

Symmetrize integral under k ↔ r − k
→֒ avoids divergences at |k±| → ∞ under expansion.

F =
1

2

∫
Dk

k2 (r − k)2

(
1

(
(p1 − k)2

)1+δ
+

1
(
(p1 − r + k)2

)1+δ

)

×
(

1
(
(p2 + k)2

)1−δ
+

1
(
(p2 + r − k)2

)1−δ

)

Regions: same as for Sudakov form factor (scaling with m → |~r⊥|),

Domains: similar (but more involved for |~k⊥| ≫ |~r⊥|)
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Forward scattering (2) p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k

Same identity as for Sudakov form factor:

F = F
(h) + F

(1c) + F
(2c) + F

(g) + F
(cp)

−
(

F
(h,1c) + F

(h,2c) + F
(h,g) + F

(h,cp) + F
(1c,2c) + F

(1c,g) + F
(1c,cp) + F

(2c,g) + F
(2c,cp)

)

+ F
(h,1c,2c) + F

(h,1c,g) + F
(h,1c,cp) + F

(h,2c,g) + F
(h,2c,cp) + F

(1c,2c,g) + F
(1c,2c,cp)

−
(

F
(h,1c,2c,g) + F

(h,1c,2c,cp)
)

With analytic regulator δ → 0: F0 = F
(1c)
0 + F

(2c)
0 [F

(h)
0 suppressed, others scaleless]

F
(1c)
0 = F

(2c)
0 =

1

2

iπ

Q2 ~r 2
⊥

(
µ2

~r 2
⊥

)ǫ
eǫγE Γ(1 + ǫ) Γ2(−ǫ)

Γ(−2ǫ)

Without analytic regularization (δ = 0): [all terms are still well-defined]

F0 = F
(1c)
0 + F

(2c)
0 + F

(g)
0 −

(

F
(1c,2c)
0 + F

(1c,g)
0 + F

(2c,g)
0

)

+ F
(1c,2c,g)
0

F
(x,...)
0 =

iπ

Q2 ~r 2
⊥

(
µ2

~r 2
⊥

)ǫ
eǫγE Γ(1 + ǫ) Γ2(−ǫ)

Γ(−2ǫ)
∀x, . . . ∈ {1c, 2c, g}

→֒ consistent results independent of regularization: 1
2
+ 1

2
= 1+ 1+ 1− (1+ 1+ 1)+ 1 X

→֒ agreement with leading-order expansion of full result
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V Summary

Expansion by regions for general integrals

• Conditions for regions (+ corresponding expansions & domains) established.

• Identity proven  relates exact integral to sum of expanded terms:

F =
∑

x ∈ R

F
(x) −

〈Rc + 1〉
∑

{x′

1
, x′

2
} ⊂ R

F
(x′

1
,x′

2
) + . . .− (−1)n

〈Rc + 1〉
∑

{x′

1
, . . . , x′

n
} ⊂ R

F
(x′

1
,...,x′

n
) + . . .+ (−1)Nc

∑

x′ ∈ Rnc

F
(x′,x1,...,xNc )

→֒ valid independent of the choice of regularization

• This identity includes overlap contributions with multiple expansions

→֒ can be scaleless  known recipe for expansion by regions X

→֒ or relevant (depending on regularization)

→֒ generalization of known recipe.

Application to example integrals

• setup of the regions, expansions & convergence domains,

• check of conditions,

• evaluation of expanded integrals,

• comparison to exact result.
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Extra slides
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“Real-life” example

−Q2

t, b (p1)

t, b (p2)

k2

k1

γ,W,Z

γ,W,Z

The expansion by regions has been applied successfully
to many complicated loop integrals.

Example: Denner, B.J., Pozzorini ’08

2-loop vertex integral in the high-energy limit

Q2 ≫ m2
t ∼ M2

W,Z  9 relevant regions: [labelled “(k1 − k2)”]

(h− h), (1c− h), (h− 2c), (1c− 1c), (1c− 2c),

(2c− 2c), (us− 2c), (1c− 2uc), (2uc− 2uc)

→֒ Next-to-leading-logarithmic result obtained and cross-checked with other methods.
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Practical note: how to find the relevant regions

• Look where the propagators have poles:

⋆ Large-momentum example: (k + p)2 = 0 at k ∼ p, k2 −m2 = 0 at k ∼ m.

⋆ Close the integration contour of one component (e.g. k0, k±).
For all residues investigate the scaling of the components.

• Use Mellin–Barnes (MB) representations:

1. Evaluate the full (scalar) integral for general propagator powers ni

in terms of multiple MB integrals.

2. Close MB contours involving the expansion parameter and
extract the leading contributions.

3. The individual terms can be identified with corresponding regions by their
homogeneous scaling with the expansion parameter depending on d and ni.

[A subsequent expansion by regions often yields simpler expressions for the contributions.]

• Try all possible regions that you can imagine . . .

If a region does not contribute, its integrals are scaleless.

• When a region is missing, the total result is often (but not always) more singular

than it should be.  Important cross-check, but no guarantee!



Bernd Jantzen, Foundation and generalization of the expansion by regions 23

Threshold expansion for heavy-particle pair production [details of Dh, Ds, Dp]

Regions analyzed in Beneke, Smirnov, NPB 522, 321 (1998)

q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

Centre-of-mass system: (qµ) = (q0,~0), (p
µ) = (0, ~p )

Close to threshold: q2 ≈ (2m)2 ⇒ q2 ≫ |p2| or q0 ≫ |~p|

F =

∫
Dk

(k2 + q0k0 − 2~p · ~k) (k2 − q0k0 − 2~p · ~k) k2

Relevant regions:

• hard (h): k0, |~k| ∼ q0 ⇒ expand
∑

j T
(h)
j in Dh =

{

k ∈ R
d : |k0| ≫ |~p| or |~k| ≫ |~p|

}

• soft (s): k0, |~k| ∼ |~p| ⇒ expand
∑

j T
(s)
j in Ds =

{

k ∈ R
d : |~k| . |k0| . |~p|

}

• potential (p): k0 ∼ ~p 2

q0
, |~k| ∼ |~p| ⇒

∑

j T
(p)
j in Dp =

{

k ∈ R
d : |k0| ≪ |~k| . |~p|

}

[no explicit boundaries needed]

→֒ Dh ∪Ds ∪Dp = R
d, Dh ∩Ds = Dh ∩Dp = Ds ∩Dp = ∅

→֒ The expansions T (h), T (s), T (p) commute with each other.


