

1st Linear Collider Forum Meeting of the Helmholtz Alliance "Physics at the Terascale" DESY, June 14–15, 2010

Electroweak non-resonant corrections to $e^+e^- o W^+W^-bar b$ in the tar t resonance region

Bernd Jantzen

RWTH Aachen University

In collaboration with Martin Beneke and Pedro Ruiz-Femenía

arXiv:1004.2188 [hep-ph]

- I Top-pair production at linear colliders near threshold
- II Evaluation of electroweak non-resonant NLO contributions
- III Results & comparisons
- IV Conclusions & outlook

I Top-pair production at linear colliders near threshold

Future linear colliders (ILC/CLIC)

with $\sqrt{s} \gtrsim 2m_t \approx 350\,\mathrm{GeV} \leadsto \mathrm{produce}\ t\bar{t}$ pairs: clean initial state of $e^+e^- \to t\bar{t}$ allows threshold scans with $\sqrt{s} \sim 2m_t$

 \hookrightarrow Precise determination of the top mass m_t , the width Γ_t , the Yukawa coupling λ_t without the uncertainties/ambiguities of hadron colliders.

Martinez, Miquel '02

Need also precise theoretical prediction

- $\Rightarrow \delta\sigma/\sigma \sim$ 2–3% ($\delta\sigma \sim$ 5 fb below threshold)
- → Important input for electroweak precision observables!

QCD corrections are known (almost) up to NNNLO order, but electroweak (EW) non-resonant NLO contributions are missing!

Also: decay $t\bar{t} \to (bW^+)(\bar{b}W^-)$ is an EW effect \Rightarrow describe $t\bar{t}$ production in terms of the more physical process $e^+e^- \to W^+W^-b\bar{b}$ and allow for invariant-mass cuts on reconstructed t,\bar{t} .

RWTHAACHEN UNIVERSITY

Perturbative expansion: NRQCD

Decay $t \to bW^+$ with $\Gamma_t \approx 1.5\,\text{GeV} \gg \Lambda_{\text{QCD}} \Rightarrow t\bar{t}$ is perturbative at threshold.

Bigi, Dokshitzer, Khoze, Kühn, Zerwas '86

But top quarks move slowly near threshold: $v = \sqrt{1 - \frac{4m_t^2}{s}} \sim \alpha_s \ll 1$

 \hookrightarrow sum $\left(\frac{\alpha_s}{v}\right)^n$ from "Coulomb gluons" to all orders:

$$R = \frac{\sigma_{t\bar{t}}}{\sigma_{\mu^+\mu^-}} = \frac{\mathbf{v}}{2} \sum_{n} \left(\frac{\alpha_s}{v}\right)^n \left(\{1\}_{\mathsf{LO}} + \{\alpha_s, v\}_{\mathsf{NLO}} + \{\alpha_s^2, \alpha_s v, v^2\}_{\mathsf{NNLO}} + \ldots\right)$$

Further RGE improvement by summing also $(\alpha_s \ln v)^m$ to all orders: LL, NLL, ...

Status of QCD corrections

- NNLO QCD corrections
 Hoang, Teubner '98–'99; Melnikov, Yelkhovsky '98;
 Yakovlev '98; Beneke, Signer, Smirnov '99;
 Nagano, Ota, Sumino '99; Penin, Pivovarov '98–'99
- NNLO & (partial) NNLL
 Hoang, Manohar, Stewart, Teubner '00-'01;
 Hoang '03; Pineda, Signer '06
- (partial) NNNLO 349 350 351 352 Beneke, Kiyo, Schuller '05–'08 \leadsto see figure [+ contributions from \sqrt{s} Kiyo, Seidel, Steinhauser '08; Anzai, Kiyo, Sumino '09; Smirnov, Smirnov, Steinhauser '09–'10]

Effective field theory (EFT) for pair production of unstable particles near threshold

Beneke, Chapovsky, Khoze, Signer, Stirling, Zanderighi '01-'04; Actis, Beneke, Falgari, Schwinn, Signer, Zanderighi '07-'08

• Non-relativistic power counting:
$$|\alpha_s^2 \sim \alpha_{\rm EW} \sim \frac{\Gamma_t}{m_t} \sim v^2 \approx \delta = \frac{s-4m_t^2}{4m_t^2} |$$

- Integrate out hard modes $\sim m_t \leadsto {\sf EFT}$ with potential (nearly on-shell) top quarks.
- Extract cross section $e^+e^- \to W^+W^-b\bar{b}$ from appropriate cuts of the $e^+e^- \rightarrow e^+e^-$ forward-scattering amplitude:

resonant contributions

with tt production operators

non-resonant contributions

correspond to full-theory $e^+e^- \rightarrow e^+e^-$ with $\Gamma_t = 0$

- ⇒ Potential corrections to resonant diagrams within EFT
- ⇒ Hard corrections to matching coefficients of operators

Electroweak effects at LO

• Replacement rule $E = \sqrt{s} - 2m_t \rightarrow E + i\Gamma_t$

Fadin, Khoze '87

Electroweak effects at NLO

- Exchange of a "Coulomb photon": trivial extension of QCD corrections (available)
- Gluon exchange between top quarks and their decay products: these contributions cancel at NLO in the total cross section, Fadin, Khoze, Martin '94; Melnikov, Yakovlev '94 they are negligible if the top invariant-mass cuts are loose enough.
- Non-resonant (hard) corrections → topic of this talk!

The resonant NNLO corrections involve "finite-width divergences" $\propto \alpha_s \frac{\Gamma_t}{\epsilon}$ (in dim. reg.). These must be cancelled by EW non-resonant NNLO contributions. \hookrightarrow Motivation for calculating EW non-resonant corrections (starting at NLO . . .).

RWTHAACHEN UNIVERSITY

II Evaluation of EW non-resonant NLO contributions

Non-resonant corrections at NLO:

- cuts through $bW^+\bar{t}$ (see diagrams) and $\bar{b}W^-t$ (not shown) in the 2-loop forward-scattering amplitude
- correspond to tree-level processes $e^+e^- \to bW^+\bar{t}$ and $e^+e^- \to \bar{b}W^-t$
- suppressed w.r.t. LO $(\sim v)$ by $\alpha_{\rm EW}/v \sim \alpha_s$
- at NLO: $s = 4m_t^2$
- hard region: $\Gamma_t = 0$. [Divergence at $p_t^2 = m_t^2$ in diagram h1 regularized dimensionally \rightsquigarrow finite negative contribution]

[symmetric diagrams not shown]

RWTHAACHEN UNIVERSITY

Form of non-resonant contributions

With the reconstructed top momentum $p_t = p_b + p_{W^+}$ (only h1-h4 have this top), the contributions of diagrams h1-h10 (for $s = 4m_t^2$) are of the form:

$$\int_{\Delta^2}^{m_t^2} dp_t^2 (m_t^2 - p_t^2)^{1/2 - \epsilon} H_i \left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2} \right)$$

with $\Delta^2 = M_W^2$ for the total cross section.

[In dim. reg. the phase-space factor $(m_t^2-p_t^2)^{1/2-\epsilon}$ regularizes the end-point singularity for h1.]

Invariant-mass cuts

Restrict invariant masses $M_{t,\bar{t}}$ of the reconstructed t,\bar{t} : $\left|M_{t,\bar{t}}-m_t\right| \leq \Delta M_t$ \hookrightarrow lower integration limit $\Delta^2=m_t^2-\Lambda^2$ where $\Lambda^2=(2m_t-\Delta M_t)\Delta M_t \leq m_t^2-M_W^2$.

We focus on loose cuts with $\Lambda^2 \gg m_t \Gamma_t =$ typical offshellness of potential top quarks (corresponding to $\Delta M_t \gg \Gamma_t$) \leadsto no cut needed for resonant contributions.

In contrast: for tight cuts with $\Lambda^2 \lesssim m_t \Gamma_t$ or $\Delta M_t \lesssim \Gamma_t \rightsquigarrow$ non-resonant contributions are absent and resonant contributions need to be cut.

III Results & comparisons

Parameters for non-resonant contributions: on-shell (pole) mass $m_t=172\,\mathrm{GeV}$, $\Gamma_t=\Gamma_t^{\mathrm{tree}}=1.46550\,\mathrm{GeV}$, α and $\sin^2\theta_{\mathrm{w}}$ from G_{F},M_W,M_Z

Comparison to recent alternative approach (HRR)

Hoang, Reißer, Ruiz-Femenía '10

- QCD & EW contributions are expanded for moderate invariant-mass cuts $15\,{\rm GeV} \le \Delta M_t \le 35\,{\rm GeV}$
 - \hookrightarrow our result is also valid for larger cuts up to the total cross section.
- ullet EW contributions match leading powers in Λ/m_t of our result
 - \hookrightarrow agreement for small cuts ΔM_t

Comparison to MadGraph/MadEvent/MadAnalysis (MG)

Alwall et al. '07

 \hookrightarrow generated 10^4 events for $e^+e^- \to W^+W^-b\bar{b}$, analyzed cut-dependence

EW tree-level contributions: cut-dependence at threshold

cross section (for $\alpha_s = 0$) at threshold ($s = 4m_t^2$) as a function of the invariant-mass cut ΔM_t

MG points (with statistical error bands): full (red triangles), without Higgs (blue circles)

Our result: EW non-resonant NLO + resonant NNLO tree-level contributions (solid-blue)

 \hookrightarrow good agreement with MG for loose cuts $\Delta M_t \gtrsim 5\,\mathrm{GeV}$

Cut resonant contribution (LO): solid-brown \Rightarrow good agreement with MG for tight cuts $\Delta M_t \lesssim 1 \text{ GeV}$

HRR result: dashed-brown \Rightarrow agrees with our result for small ΔM_t

Full cross section with QCD LO & EW NLO contributions

 $\left[\alpha_s^{\overline{\rm MS}}(30\,{\rm GeV})=0.142\right]$

Relative sizes of EW NLO corrections w.r.t. LO (incl. resummed "Coulomb gluons"):

QED resonant correction ("Coulomb photons"),

non-resonant NLO correction,

combined EW NLO corrections

IV Conclusions & outlook

EW non-resonant corrections to $e^+e^- o W^+W^-b\bar{b}$ in the $t\bar{t}$ resonance region

- NLO contribution completed by EW non-resonant contributions for total cross section and with top invariant-mass cuts
- \bullet correction of \sim -30 fb (-3% above and much more below threshold) for total cross section, even more with invariant-mass cuts
- good agreement with MadGraph for loose cuts
- good agreement with Hoang-Reißer-Ruiz-Femenía result for small cuts

Future improvements

- add initial-state radiation and convolution with electron distribution functions
- add gluon exchange to non-resonant contributions ⇒ EW NNLO corrections
 - \hookrightarrow cancel finite-width divergences $\propto \alpha_s \frac{\Gamma_t}{\epsilon}$

Extra slides

UNIVERSITY

Non-resonant corrections: contributions of the diagrams

contribution to cross section as a function of the invariant-mass cut Λ

EW tree-level contributions: energy-dependence for different cuts

cross section (for $\alpha_s=0$) as a function of the centre-of-mass energy \sqrt{s}

MG (full) points & error band,

EW NNLO tree-level contributions (solid-blue) [resonant + non-resonant],

only resonant contributions (dotted-black)